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abstract

An efficient, accurate, and simple method for doing
suboptimal piecewise linear approximation of open or
closed space curves is described.  The algorithm guaran-
tees approximation within a deviation threshold and is
offered as an efficient alternative to the popular, but
inefficient, split and merge approach.  The several effi-
cient alternatives this author encountered are defined
only for planar curves.  The approach we offer is also
appropriate for space curves.  In our approach, a mono-
tonically increasing function of chord and arc length is
used to form the initial set of approximating points fol-
lowed by a merging of those points.  A posterior least
squares fitting technique is presented which further
improves the approximation.  Preliminary Gaussian
smoothing can be done depending on the application.
Analysis of this new approach on a variety of planar
curves is presented and comparisons are made with
other piecewise linear curve approximation algorithms.  

1 introduction

Planar curve approximation methods have received
much attention in the computer vision literature for a
long period of time.  Such approximations are useful for
a variety of reasons:

• shape analysis algorithms, e.g., 2D template match-
ing [Jain 96], rarely require a complete set of data 
[Sato 93]

• significant data reduction can be achieved, particu-
larly for large input curves, depending on the accu-
racy of the approximation

• many real-time applications, e.g., display graphics, 
can realize significant speedups through curve data 
reduction via curve approximation

Piecewise linear planar curve approximation has been
the focus of particular attention and is attractive largely
because of the inherent simplicity of an iconic represen-
tation.  For example, there is an ease and simplicity
when doing correlations with model templates.  More
abstract curve representations (such as B-splines) may
be harder to compare with models.  The piecewise linear
algorithms can be classified into the following types:  

• optimal and suboptimal

• global and local (as to how the algorithm processes 
the data)

• efficient, i.e., O(n), and inefficient, i.e., O(n2), for n 
sampled data points in the input curve

• can handle non-integer valued curves or just integer 
valued curves as input

• can handle open as well as closed curves

• can handle space curves or just planar curves as 
input

To some extent the diversity of methods arises out of
a multiplicity of needs of those seeking to design and
employ such algorithms:  

• speed and determinism for use in real-time pattern 
recognition systems

• optimality in error performance where there is no 
need for on-line, real-time performance

• data reduction on integer valued planar curves, often 
defined as chain codes, gotten from thinned edge 
images which were, in turn, gotten from intensity 
images  

• simplicity for ease of programming and debugging

• human-like, symmetry preserving results

• manufacturing applications requiring curve approxi-
mation for machine tool or measurement probe tip 
paths in 3-dimensional space

• combinations of the above

The method described in this paper is defined for
curves in space (R3) and it is simple, fast, deterministic,
and guarantees accuracy.  We have in mind its use par-
ticularly for manufacturing applications such as those
found in defining paths in R3 of machine tool cutting
bits and coordinate measuring machine probe tips.  

2 related research

Pavlidis [Pavlidis 77] and Dunham [Dunham 89]
offer optimal approaches.  An optimal piecewise linear
curve approximation typically means that, if we desire
to approximate with m points a curve which has n Š m
points, the particular m points selected will give the
approximation which minimizes the maximum devia-
tion of the curve points from the approximating line seg-
ments.   As one would expect, the computational cost of
the optimal methods rises sharply with the number of
input points [Dunham 89].  

Human-like, symmetry-preserving approaches are
found in several papers.  Fischler and Bolles
[Fischler 86] have developed a suboptimal approach
that succeeds in copying human perceptual partitioning
of planar curves: high level perception activity is
accomplished, e.g., noisy segments are distinguished
from non-noisy segments.  However, the algorithm is
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inefficient and the input parameters are difficult to tune.
Aoyama and Kawagoe [Aoyama 89] also focus their
efforts on avoiding distortion and providing human-like
performance more than assuring simplicity and effi-
ciency, since the complexity of their algorithm is O(n2).
They also limit themselves to digital planar curves.
They classify linear approximation algorithms based on
whether the data is accessed serially or globally.  How-
ever, for many computing tasks, simplicity and effi-
ciency are of the highest priority.  Real-time object
recognition systems for manufacturing are less con-
cerned with human-like approximations and more with
simplicity and efficiency.  The algorithm we have devel-
oped is clearly biased towards these types of concerns,
however, our approach creates a remarkably small
amount of global distortion as will be shown in the fig-
ures.  

Sklansky’s planar curve approximation method
[Sklansky 80] is shown by Dunham [Dunham 89] to be
efficient and to find curve approximating points that are
very close in number to those found by optimal algo-
rithms.  However, Sklansky’s approach is defined for
digitized, planar curves only.  

Teh and Chin [Teh 89] have also defined an algorithm
for finding dominant points on digital curves that has a
reasonably good error performance.  However, their
method suffers from the following weaknesses:

• It is complex to describe and the concept of ‘region 
of support’ seems non-intuitive

• No parameters are supplied to control tightness of fit  

• The algorithm can be performed in parallel, but is 
relatively slow if done serially 

• It assumes closed, digital planar curves only.  

Robergé [Robergé 85] defined an efficient algorithm
for planar curves.  This approach has a consistently
shorter execution time compared to several other effi-
cient algorithms [Dunham 86].  It is also not sensitive to
quantization error.  However, we noticed the following
weaknesses:

• The true upper bound guaranteed by the algorithm, 
, is noticably looser than our approach for the 

sample curves we investigated as shown in Figure 6   

• For some curves (see Figure 6) Robergé’s algorithm 
distorts the graphic significantly

• An additional parameter is required for input other 
than deviation

William’s method [Williams 77] is not reliable since
it cannot guarantee an upper bound on the approxima-
tion error (see Figure 6).  This fact is enough to disqual-
ify this approach for many manufacturing applications,

in which deviation in approximation must be tightly
controlled.  However, it is conceivable that a minor
modification to this approach would correct the prob-
lem.  

Of approaches that are suboptimal, the split and
merge method has arisen as perhaps the most popular
[Chen 79, Duda 73, Jain 89, Grimson 90].  Its popular-
ity is due to its 

• simplicity, since it is controlled by a single, physi-
cally meaningful parameter, and it is easy to state 
and code

• guaranteed error performance, since it directly mea-
sures error

• ability to preserve visual features

• successful use as a preliminary step in optimal 
approaches [Pavlidis 77]

• ability to handle closed as well as open curves

• ability to handle analog space curves as well as digi-
tal planar curves

However, there are several known weaknesses: 

• it is suboptimal

• it is inefficient, i.e., O(n2), for n sampled data points 
in the input curve, because it analyzes the data recur-
sively

• there is also a problem with its sensitivity to the 
choice of initial breakpoint [So 93]

• the compute time varies depending on the degree of 
approximation required (i.e., ‘tightness’ of fit) which 
could be a problem for some real-time applications 
(see Figure 5)

• several attempts to improve the efficiency of the split 
and merge approach come with an increase in com-
plexity [Nevatia 80, So 93]

The split and merge is also an off-line algorithm
(non-real-time) in the sense that it  requires that all the
data be collected before processing.  This is not desir-
able for many real-time applications.  For example, in
the collection of position data from a machine tool, one
would like to eliminate redundant data as it is being col-
lected.  However, one algorithm often used that pro-
cesses the data serially is the cone intersection algorithm
[Williams 77].  However, the amount of global distor-
tion in the Williams method may be unacceptable
[Aoyama 89].  

Many algorithms assume digital curves (often
defined by Freeman chain codes [Teh 89]), implicitly
arguing that it is so common in image processing that
allowing for the more general case is unnecessary.
Algorithms that only deal with digital curves, e.g.,

5d
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[Aoyama 91] and [Teh 89], are limiting because one
may want to perform Gaussian smoothing first.  Errors
in a digital curve such as quantization error, missed
points, or redundant points argue for a method that can
allow curves with such anomalies.  

One might ask why not just check the error from the
chord lines directly and serially until that error is
exceeded?  This is a non-recursive serial algorithm and,
therefore, the compute cost is proportional to the square
of the number of data points.   This is because errors
must be formed again and again for the same points for
each approximating line segment.  Also, because it pro-
cesses the data locally, it hasn’t the global feature pre-
serving qualities of the split and merge algorithm.  

3 the chord and arc length 
algorithm

We now describe the chord and arc length (CAL)
method for piecewise linear space curve approximation
below.  Steps one and three describe CAL.  Step two is
an optional preliminary Gaussian smoothing step; step
four is an optional posterior merging step; steps five
through seven describe an optional posterior least
squares fitting step.  

1. determine whether the curve is open or closed

2. do local Gaussian smoothing on the raw input curve, 
as needed, to reduce local error (e.g., quantization 
error)

3. starting anywhere on the closed curve (at the first 
point on the open curve), compute chord length, C, 
and arc length, S, for each successive point and when 

 is greater than the maximum devia-
tion parameter, declare the previous point to be a 
dominant point

4. merge dominant points by testing if each dominant 
point can be eliminated without exceeding the 
threshold on deviation

5. compute a (parameterized) least squares line to the 
points on the curve between and including the most 
recent two dominant points computed

6. find the point on the previous and current least 
squares fit lines that are closest to the previous dom-
inant point

7. choose the midpoint between these two closest 
points as the latest approximating point

For many applications, steps one, three, and four will
be all that is needed.  Both Gaussian smoothing and
least squares fitting require significant additional com-

putation, but still do not lead to inefficient computa-
tional costs.  

Gaussian smoothing is sometimes useful because, for
example, in image processing, an edge thinning algo-
rithm may produce thinned edge pixels having redun-
dant neighbors, for example, one four-neighbor and one
eight-neighbor

1

.  Local smoothing can ameliorate local
noise such as quantization noise.  Gaussian windows of
size five were used in our simulations.  

Posterior least squares fitting just provides a tighter
approximation, however, digital points would then be
replaced by real valued points.  It also ameliorates the
inscribing problem found in the split and merge method
(inscribing is also true with CAL less the posterior least
squares method).  It provides a better fit to smoothly
curving data (e.g., circles) because it computes least
squares lines and uses them to compute the approximat-
ing points. 

The only additional complexities over the split and
merge method are the addition of the least squares line
computation and Gaussian smoothing, both of which are
optional.  

3.1 advantages and disadvantages of curve 
approximation using chord and arc length

This algorithm we’ve described has the following
advantages:

• simplicity, since it is easy to state and code, and it is 
controlled by a single physically meaningful param-
eter, the maximum deviation parameter.  

• efficiency,  i.e., O(n), for n sampled data points in the 
input curve. 

• guaranteed error performance, proven in the appen-
dix

• error performance is good compared to the popular 
but inefficient split and merge method

• excellent ability to preserve visual features when 
compared to some other efficient algorithms

• it is relatively insensitive to the initial choice of start-
ing points

• performance times are constant with respect to the 
deviation threshold  

• ability to handle closed as well as open curves

• ability to handle non-integer valued points in space 
(R3) as well as integer valued planar curves

1 2⁄( ) S2 C2–

1. such a set of neighbors is not necessarily redundant (e.g., at 
a corner).  
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None of the efficient methods we encountered are
defined to handle space curves.  The popular split and
merge method can handle space curves but it is ineffi-
cient, which means that, for very large input curves,
compute time can be forbidding.  The simple statement
of this new method requires only one serial pass through
the data and the compute time is only linearly dependent
on the number of data points.  This fact is of interest to
certain real-time applications in which the dominant
points need to be selected on-line, i.e., before all the
data has been collected.  In addition, the compute time is
essentially constant with respect to the required degree
of approximation.  The latter advantage is again impor-
tant to certain real-time systems.  Deterministic perfor-
mance is accomplished, since execution time is nearly
constant with respect to the tightness of fit.  Efficiency
is gained by indirectly measuring approximation error
through the monotonic function of chord and arc length,

.  

The disadvantages of CAL are:

• it is sensitive to quantization error, however, if such 
error is present in a curve, preliminary Gaussian 
smoothing and/or posterior merging will ameliorate 
this problem

• Adding the posterior merging step to ameliorate 
quantization error adds significantly to the total exe-
cution time of the algorithm and in some pathologi-
cal cases would cause the algorithm to be inefficient.  

• the split and merge method produces less perceiv-
able deformity of the original curve than CAL (how-
ever,  CAL produces less deformity than Williams 
(see Figure 6))

• it requires a costly square root calculation at each 
step (this could be approximated)

• none of the curve approximation methods studied 
(including CAL) minimize total deviation error, but 
only minimize maximum deviation error.  Some-
times the maximum error can be small but the total 
error large, which can produce global distortion

CAL establishes an indirect measure of error by cre-
ating a natural upper bound on the deviation error of the
approximation.  This simple step brings efficiency with-
out significant loss in error performance.  Using lan-
guage in [Aoyama 91], CAL accesses the data
sequentially, the split and merge algorithm accesses the
data globally.  Global access (for the split and merge
method) means that all the data in the curve is examined
by the algorithm during each pass.  However, while
other algorithms seem to gain from global data access
(e.g., [Aoyama 91]), the split and merge algorithm suf-
fers from a significant loss of efficiency without signifi-

cant appreciable gain.  CAL (particularly with open
curves but also with closed curves) almost completely
avoids the problem on the choice of initial breakpoint
from which the split and merge suffers [So 93].  How-
ever, because CAL measures error indirectly, the maxi-
mum error will deviate from the threshold value more in
CAL than in split and merge depending on the particular
shape of the curve.  Moreover, the amount of this devia-
tion in CAL is based on the ‘sharp corners’ in the curve,
i.e., a smoothly varying curve will have greater devia-
tion.  CAL more naturally accommodates closed and
open curves whereas many approaches seem more natu-
rally suited to one or the other (e.g., split and merge is
more suited to open and Teh-Chin to closed).  

In the appendix we prove the claim that the CAL
algorithm guarantees that the original curve points will
never be farther than a user defined threshold away from
the line segment used to approximate the curve segment
containing that original point.  The CAL algorithm can
be considered an efficient, albeit indirect, form of the
split part of the split and merge approach.  

3.2 analysis

We now describe the chord and arc length algorithm
more precisely.  Let , , be a
sequence of points defining a curve in R3.  An example
of such a curve is illustrated in Figure 1.  If

, the curve is closed.  We seek a sequence
of dominant points, ,  , such
that, for 

(EQ 1)

for a given maximum deviation value, d.
 is the set of points along the

chord from  to .  The distance function,
dist, computes the shortest distance from a point on
the curve in R3 to points on the chord.  These definitions
are illustrated in Figure 1.  

1 2⁄( ) S2 C2–

α i( ) i 1 2 … n, , ,=

α 1( ) α n( )≈
α ij( ) j 1 2 … m n≤, , ,=

ij i ij 1+< <

max dist α i( ) lineseg α ij( ) α ii 1+( ),( ),( ){ }
d≤

lineseg α ij( ) α ii 1+( ),( )
α ij( ) α ij 1+( )

α(ij) α(ij+1)

max{dist(α(i), lineseg(α(ij), α(ij+1))) : ij < i < ij+1}

lineseg(α(ij), α(ij+1))

dist(α(ij), α(ij+1))

emax(ij, ij+1) = 

Figure 1:  The max distance from points on an arc in R3

to the line segment joining the endpoints of the arc.  
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With  as the most recently determined dominant
point, to find , the next dominant point, we form
expressions for chord length, , and arc length,

, between the points,  and , for ,

(EQ 2)

and  

(EQ 3)

respectively, until, for some 

(EQ 4)

Then we choose  (the previous point) as the
new dominant point and we assign the indice,

.  Therefore, since (EQ 4) is monotonically
increasing,

(EQ 5)

If the curve is closed, all operations are mod n; if
open, choose  and  as the first and last domi-
nant points.  

We must show that (EQ 1) is true if (EQ 4) is met
throughout the sequence of points .  This can most
easily be demonstrated by examination of Figure 2.
Intuitively we can think of the function by
imagining that, if the curve were a flexible, but not
stretchable, string attached at the dominant points, 
and  and we pushed the string upwards with a
stick, we can form an isosceles triangle as in Figure 2.
We can prove that, for any curve in R3,

(EQ 6)

where  is the largest deviation from points
on the curve from  to  to points on the
chord from  to  as illustrated in Figure 1
and  Figure 2.  We prove (EQ 6) in the appendix. 

A lemma and a theorem (stated and proved in the
appendix) reveal that if we are given a threshold value,
d, the basic chord and arc length algorithm we have
described will guarantee that the deviation of each point
on the curve from its appropriate approximating line
segment (i.e., the chord line segment) will be less than
or equal to d.  This provides a physically meaningful
upper bound on the approximation while maintaining
efficiency.  

The merge process operates as in the split and merge
method, namely, if 

(EQ 7)

for all i such that  ,  is eliminated as
a dominant point.   

Gaussian smoothing is not a necessary part of this
approach, but can be useful with digital curves when we
wish to eliminate quantization noise.  Let, , be the
unsmoothed sequence of points in R3.  For w odd, the
Gaussian smoothing vector of length w is

 , (EQ 8)

be integrations of appropriately chosen, normalized one-
dimensional Gaussian functions1.  Then the smoothed
sequence of curve points in R3 is 

. (EQ 9)

We now describe a least squares fitting technique to
further reduce approximation error and to help amelio-
rate the inscribing error problem found in all referenced
approaches.  Like Gaussian smoothing, least squares fit-
ting is not a necessary part of this approach, but may be
useful if computing time is available and non-integer
valued points are acceptable.  Each subset of points,

 ,

on the original raw input curve between dominant points
is used to fit a parameterized line

2

, .  We find

α ij( )
α ij 1+( )

c ij i,( )
s ij i,( ) α ij( ) α i( ) ij i<

c ij i,( ) α i( ) α ij( )–=

s ij i,( ) α k 1+( ) α k( )–

k ij=

1–

∑=

i ij>

d ij i,( ) 1
2
--- s

2
ij i,( ) c

2
ij i,( )– d>=

α i 1–( )

ij 1+ i= 1–

d ij ij 1+,( ) d≤

α 1( ) α n( )

α(ij)

α(imax)

α(ij+1)

d
2

s(ij, ij+1)

emax(ij, ij+1)

c(ij, ij+1)

d(ij, ij+1)

Figure 2:  The isosceles triangle formed from the length
of the arc in Figure 1.  

α i( )

d ij ij 1+,( )

α ij( )
α ij 1+( )

emax ij ij 1+,( ) d ij ij 1+,( ) d≤ ≤ 1. We used Gaussian windows of size three, five, and seven: 
(0.1586, 0.6827, 0.1586), (0.0228, 0.22978, 0.4950, 
0.2297, 0.0228), (0.0062, 0.0606, 0.2417, 0.3829, 0.2417, 
0.0606, 0.0062)

emax ij ij 1+,( )
α ij( ) α ij 1+( )

α ij( ) α ij 1+( )

max dist α i( ) lineseg α ij 1–( ) α ii 1+( ),( ),( ){ }
d≤

ij 1– i ij 1+< < α ij( )

α i( )

g w 1–
2

-------------–
… g, 1– g0 g1 … gw 1–

2
-------------

, , , , , 
 

β i( ) α i( )g j i–( )

j i
w 1–

2
-------------–=

i
w 1–

2
-------------+

∑=

α ij( ) α ij 1+( ) … α ij 1+ 1–( ) α ij 1+( ), , , ,( )

l2 t( )
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points,  and , which are the points on the previous
least squares line, , and on the current least squares
line, , that are the shortest distance from  to
each of the lines.  The latest approximating point is then
chosen as the midpoint between  and 

1

.  

3.3 algorithm performance

In this section we present some of the results of test-
ing the CAL approach to curve approximation on a vari-
ety of types and sizes of curves and also testing its
performance against some of the other curve approxi-
mation methods discussed in this paper.  

3.3.1 Curve approximation algorithm 
performance metrics

There are several metrics that we have established for
measuring performance: 

1. How does the actual maximum deviation (of the 
original curve points from the approximating line 
segments) compare to the input deviation thresh-
old?  The closer the former is to the latter, the better 
the algorithm.  It is generally not good if the former 
can exceed the latter.  

2. For a given actual maximum deviation, how many 
approximating points where required? Fewer 
approximating points for a given deviation is better.  

3. With all else being equal, what is the speed of execu-
tion? 

4. What is the variability in the speed of execution with 
respect to the number of approximating points (con-
trolled by the input deviation parameter)? 

5. What is the variability in the speed of execution with 
respect to the size of the input curve?

We will now analyze the performance of the chord
and arc length method (CAL) under these various met-
rics.  

3.3.2 Performance of CAL under metric #1: actual 
deviation vs. input deviation

It is essential to examine the error between the
approximating line segments and the smoothed curve
points as a function of the number of approximating
points for a variety of types of curves.  We find that the
chord and arc length algorithm performs better than
both the split and merge and the Teh-Chin algorithm in

the two example curves we used.  We expect that the
split and merge method would do slightly better when
the starting point of a closed curve is chosen carefully
[So 93].  However, this comes at a significant cost in
additional complexity.  We demonstrate the errors of
several algorithms in Figure 4 for the digital closed
curve of a chromosome in Figure 3.  Particularly sur-
prising is the performance of CAL with respect to the
split and merge method as shown in Figure 8 for the dig-
ital closed curve of a leaf in Figure 6.  Figure 6 shows
the excellent performance of CAL by this metric against
two other efficient algorithms, namely, Williams
[Williams 77] and Robergé [Robergé 85].   Williams
performance is particularly poor on this curve because it
reveals that errors of approximation greater than thresh-
old can occur.  The performance of the Robergé algo-
rithm shows that the actual maximum deviation (of the
original curve points from the approximating line seg-
ments) is too much less than the guaranteed threshold
value.  We have also analyzed standard deviation errors
and total deviation errors and have obtained results sim-
ilar to that reported on maximum error in Figure 4 and
Figure 8.  

3.3.3 Performance of CAL under metric #2: 
number of approximating points for a given 
input deviation

In Figure 6 we see that for a given input deviation
value, the number of approximating points varies rather
widely over the three candidate algorithms.  The Rob-
ergé algorithm gives a poor performance.  Williams per-
form very well against CAL, mostly because of CAL’s
sensitivity to quantization error.   CAL does better by
this metric when posterior merging is performed as can
be seen in Figure 6.  

3.3.4 Performance of CAL under metric #3: 
execution speed

Robergé is fastest as is reported by Dunham
[Dunham 89] and which we also discovered as illus-
trated in Figure 6 (the unit of time in Figure 6 is rela-
tive).   CAL is significantly slowed when posterior
merging is done as shown in Figure 6.  

3.3.5 Performance of CAL under metric #4: 
execution speed variability with respect to 
the number of approximating points

CAL performs particularly well against the split and
merge algorithm as shown in Figure 5, which means that
the timing curve for CAL is flat with respect to the num-
ber of approximating points. 

2. Parameterized fitting easily allows fitting to arbitrary 
curves and minimizes perpendicular distance

1. Some minor changes to this general process are required at 
the beginning and end of each curve and for open versus 
closed curves.  

p1 p2
l1 t( )

l2 t( ) α ij( )

p1 p2
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3.3.6 Performance of CAL under metric #5: 
execution speed and speed variability with 
respect to the size of the input curve

All the efficient algorithms execute in linear time,
O(n), whereas the split and merge approach is O(n2), for
n sampled data points in the input curve.  However, it is
with large curves that the main weakness in the CAL
algorithm, namely sensitivity to quantization error, is
evident.  Figure 7 gives an example of CAL with and
without merging on a large curve (approximately 2000
data points).   Figure 6 shows that the time of execution
of CAL is greatly increased when posterior merging is
added.  

4 future work

It is conceivable that the use of scale invariant forms
of the CAL algorithm would be useful for some applica-
tions.  For example, we could use a normalized function
of chord and arc length, something like

, where C is chord length and S is
arc length.  This would allow us to define a system that
doesn’t require any input parameter.  

Because the main weakness of CAL is the sensitivity
to quantization error, and because the competing effi-

cient algorithms effectively do an efficient type of merg-
ing, it would be worthwhile to investigate the
combination of CAL and one of the other efficient
approaches.  It might also be fruitful to investigate an
efficient but global feature preserving combination of
the CAL approach and the split and merge method. 

Even though optimal methods are known to be ineffi-
cient, it would also be helpful to use an optimal
approach as a benchmark for testing the performance of
CAL.  CAL with merge

CAL with Gaussian
smoothing, merge,  
& posterior least 

squares 

CAL with 
merge & posterior

least squares

split and merge

Figure 3:  A specific closed input curve (from Teh and 
Chen [Teh 89]) with curve approximation using CAL 
and split and merge.  
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Chord and arc length
(with posterior merging)
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Figure 6:  A specific closed input curve (from Teh and Chin [Teh 89]) with curve approximation using the same input 
deviation threshold with three efficient algorithms.  
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5 conclusion

We have presented an efficient suboptimal method
for piecewise linear curve approximation for space
curves with integer or non-integer values.  

It’s excellent error performance (as measured by the
maximum actual deviation error versus the number of
approximating points), guaranteed error performance
(proof in appendix),  efficiency, and ability to handle
non-integer valued space curves as well as integer val-
ued planar curves are the key strengths of the approach
presented.  Because of its ability to handle space curves,
we hope that this algorithm will not have application
only to computer vision, but to other applications such
as the representation of machine tool cutting paths.  

The sensitivity to quantization error and the need, in
such cases, for preliminary Gaussian smoothing and/or
posterior merging, which adds significantly to the com-
putation, is the major weakness of this approach.  Per-

haps a useful marriage between CAL and one of the
other efficient methods would be profitable.  

CAL plus posterior merging can be thought of as an
efficient modification of the split and merge method in
which the error is calculated indirectly instead of
directly.  CAL operating times are linearly proportional
to the number of data points processed.  Because split
and merge operating times are proportional to the square
of the number of data points, curves with many points
can take forbiddingly long times to compute depending
on how precise the approximation is, which implies that
the compute time of the split and merge method varies
with the size of the input deviation threshold (as shown
in Figure 5).  Alternatively, performance times of CAL
are constant with respect to the deviation threshold.
Another advantage of CAL is that it seems to be insensi-
tive to the choice of the initial breakpoint, unlike split
and merge [So 93].  The split and merge method
chooses the same set of approximating points in each
iteration, just adding more for increased accuracy.  The
approximating points chosen by CAL varies more
widely.  This is because the split and merge method
accesses the data globally, CAL (and other efficient
algorithms) access locally.  

‘C’ code is available which realizes the CAL algo-
rithm and can be accessed through anonymous ftp1 at
isdftp.cme.nist.gov.  The necessary files are in the direc-
tory /pub/horst.  The key files are main.c, curvefit.c, cur-
vefit.h, v2d_math.c, and file_in.  The input deviation
parameter is user-specified within the file, curvefit.h.
The input curve data must be in the same format as the
data in the file called file_in.  
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Figure 7:   Curve approximation with CAL on an input curve (1708 points).  Input deviation threshold = 12.  
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6 appendix

We now prove (EQ 6), but first we state some defini-
tions.  Definitions:  Let , , be a
sequence of distinct points in the plane.  Let  S =

, the arc length function (EQ 3), C =
, the chord length function (EQ 2), Emax =

, the maximum distance from points ,
, to the line segment

formed by the points  and , , the
point on the curve where the deviation from the chord
line segment is at a maximum (illustrated in Figure 9
and Figure 10), , the distance from  to the
line formed by the points  and , and D =

.  

Lemma:   ð D.  

Proof:  Construct a triangle formed by the points
, , and  with base of length C and

sides of lengths A and B.  These definitions are illus-
trated for two different triangles in Figure 9 and Figure
10.  Let b be the angle opposite the side of length B and
let a be the angle opposite the side of length A.  Note
that  = Emax only when a and b are less than or
equal to π/2.  In Figure 9 and Figure 10,  is the
height of the triangle.  Construct an isosceles triangle, as
in Figure 11 and Figure 12, with base length and perim-
eter equal to those of the triangle in Figure 9 and Figure
10, respectively.  Let h be the height of the isosceles tri-
angle.  Let R = A + B.  Since the shortest distance
between two points is the line segment connecting them,
R ð S. From elementary geometry, 

(EQ 10)

which implies that  ð .  Since R ð S and  =
,  ð D.  Since   ð  ð D,    ð

D.

α i( ) i 1 2 … n, , ,=

s ij ij 1+,( )
c ij ij 1+,( )
emax ij ij 1+,( ) α i( )
i ij ij 1+ … ij 1+ 1– ij 1+, , , ,=

α ij( ) α ij 1+( ) α imax( )

ξmax α imax( )
α ij( ) α ij 1+( )

1 2⁄( ) S2 C2–

ξmax

α ij( ) α imax( ) α ij 1+( )

ξmax
ξmax

ξmax h 1
A B–

C
------------- 

 
2

–=

ξmax h h
1 2⁄( ) R2 C2– h ξmax h ξmax

A
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b
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Emax=ξmax

α(ij)

α(imax)

α(ij+1)

Figure 9:  Triangle formed by the two endpoints of the 
arc and the point of maximum deviation in the case 
where a and b are less than π/2.  
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Figure 10:  Triangle formed by the two endpoints of the 
arc and the point of maximum deviation in the case 
where b > π/2.  
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Figure 12:  The isosceles triangle equivalent to the 
triangle of Figure 10.
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The lemma shows that the distance from  to
the chord line is always less than D = .
However, if a Š π/2,  Emax = B, and if b Š π/2,  Emax = A.
In both these cases Emax Š  (see Figure 10).  There-
fore, the lemma alone is not sufficient to support the
claim of (EQ 6).  In other words, we need to prove that
the distance from  to the chord line segment is
always less than D which is stated in the following theo-
rem.  

Theorem: Emax ð D. 

Proof:  There are only three cases to consider.  We
will now show that the theorem is established for each
case.  

Case 1:  a  < π/2 and b  < π/2

Case 2:  b  Š π/2

Case 3:  a  Š π/2

Proof of Case 1: As in Figure 9, if a  < π/2 and b  < π/
2, since Emax = , the lemma implies that Emax ð D.

Proof of Case 2: If b  Š π/2, as illustrated in Figure
10, Emax  = A.  Construct an isosceles triangle (as in Fig-
ure 12).  Let h be the height of this isosceles triangle.
From the proof of the lemma, h ð D.  By the
Pythagorean relation, 

, (EQ 11)

and by the law of cosines (from Figure 10), 

.  (EQ 12)

If we add (EQ 11) and (EQ 12) we get, 

.  (EQ 13)

The term in parentheses in (EQ 13) Š 0, since  ð 0.
Therefore, A ð h and since h ð D, A = Emax ð D.  

Proof of Case 3: The exact same process presented in
the proof for Case 2 is required to show that if a Š π/2, A
= Emax ð D.
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